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under consideration. 
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INVESTIGATION OF THE OSCILLATIONS OF ESSENTIALLY NON-LINEAR SYSTEMS 
WITH INTERNAL RESONANCE* 

V.G. VERETENNIKOV and I.A. KOROLEV 

Oscillations in systems which do not become linear when the small parameter 
becomes equal to zero are studied. It is assumed that the generating 
system contains odd-order resonances. Conditionally periodic solutions 
of the generating and complete systems are constructed with an accuracy 
of uptofirst order in the small parameter. The results obtained represent 
a further development of the theory of bifurcation of the growth of a 
cycle from a position of equilibrium. 

1, Let us consider an essentially non-linear quasi-autonomous system of 2n-th order 
differential equations 

uh' = ivkulc + A#Ivt + zl PLIulrl (h VY t) (1-f) 

vr’ = ii,‘; vk~~k, UP=V~PW~. . .upn", Ak=const 

where p is a small parameter. The functions Ukl are polynomials in uk, Vk (k = i,...,s) of 
an arbitrarilylargedegree, vanishingwhen u = v = 8, with coefficients conditionally t- 
periodic and represented by a generalized finite Fourier series. The series in the parameter 
M are absolutely convergent when its values are sufficiently small, and the point u = U ~8 
is a unique singularity in the domain of variation of u and v in question. 

we assume that the frequencies are connected by an odd-order resonance relation 

prv1 + . . . + PnV, = 0 
(pi > 0 (i = 1, . . ., n), p = Zp, = 2m + 1 (m = 1,2, . . .)) 

We note that when we have the internal odd-order resonance and no resonance relations 
of the same order connecting the eigenfrequencies with the frequencies of the conditionally 
periodic coefficients, we can reduce, to system (l.l), the arbitrary system of equations of 
perturbed motion with n pairs of the purely imaginary roots of the form 

. 
~k=-YkI/k+Xk (p-+xp+ . . ., y;= VkIk + yp-‘)+ yp+... 
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where X$m)(x,grt), Yk(m)(~, y,t) are the m-th order forms in x and y, which can have periodic, 
as well as conditionally periodic coefficients. 

Indeed, passing to the complex conjugate variable uk = rk + iy~, 4 = xk - iyR and carrying 
out the necessary transformations given in /l-3/, we arrive at the system 

Us*= ivbuk + AhvP/vs + U$‘(u, u, t) + . . ., uk*= i&’ 

Introducing into this system a small parameter by means of the substitution 

uk =~wkt?kt, i&=~+=@~e -zavkt (a =; 1 - PP-a) 

changing the time scale thus r = d-"t and restoring the variables wk,G&,r to the previous 
notation % r, t, we obtain a system of the form (1.1). 

We shall consider the degenerate case, when 

Dn = Cz,bd - b,a* = 0 (z = 1, . . ., n) (1.2) 
at =ReAi, bi =ImAi 

We pose the problem of determining the stationary solution, in the sense of /l/, of 
system (1.1) in terms of the first order in p, which become, when p =O, the conditionally 
periodic solutions of the truncated system 

up' = ivIIuL + AIIVplUli, vk’ = iik’ (1.3) 

We note that condition (1.2) can be made to hold also in the case when all values of 

&i are of the order of p'i(l,>1), whereas Ai are not small. 
As we known /2, 3/, (1.2) represents the necessary condition of stability of the zeroth 

solution of system (1.1) only when n = 2. However, the case when (1.2) holds is of con- 
siderable interest since it happens, in particular, in the case of Hamiltonian systems. When 
(1.2) holds, the zeroth solution of system (1.3) is stable if and only if the sequence of 
numbers b,, . . ., b, (a,, . . ., a,,) contains at least one change of sign. Let us write z, = -sign bi 
and pass to real variables with the help of the substitution 

ut=(Ibk/b, Irk)‘/xe’ek (k = 1, . . ., n) (1.4) 

We assume that 

b,> 0, bi < 0 (i =2,. . ., %f, bj> 0 (j = n, + 1, . . ., n) 

and omit, for brevity, the case when the numbers bk contain zero values, since the correspond- 
ing equations are then quasilinear and can be included in the discussion in Sect.2. 

As a result of the substitution (1.4), system (1.3) will take the form 

rk' = -2z,iW= co9 y, (1.5) 
et* = vir + z,lWk;; sin y 

where 

Y = he1 + . . . + paen - fib 

(pa = arg Al, rt Vs (zk + 1) x (k = 1, . . ., n) 
(f.6) 

System (1.5) admits of n first integrals 

rI + r, = R (1.7) 
rl + ri = R (1 f 2,) (i = 3, . . ., n,; zi > -1) 

5 - rl = -Rzj (j = n, + 1, . . .,n; rj> -1) 

rp/z sin y = h (R > 0, z,, ~3, h - const) W) 

and can be reduced, by a simple change of variables, to the Hamiltonian form which is obtained 
in normalized form. 

The condition that all ri are non-negative yields the domain of definition of r,: RI < 
r, < R,, where 

RI = max (0, -Rzn,+lr . . ., --Rz,) 

R, = min (R, R( (1 + z,), . . ., R (1 i- z,,)) 

Further discussions and arguments carried out in Sect.1 are part of the process of 
integrating system (1.5). 

Taking into account expressions (1.7) , we can show that the equation 



444 

has only a single solution rl,, = Rcc,, in the interval (R,, R,), and O<a,<l. 
Let us introduce the variable x such, that 

ri = R (ai - 2,X) (i = 1, * . ., a) 
This is clearly possible, provided that 

a, = 1 - a,, CL, 3 a2 + ri (i = 4, , . ., n,), tXj = a, + 

7j (i = n, -I- 1, I ., n) 

The variable r lies within the limits f&<x< 02 where pt =--E-,+R~/R. When r= pt, 
at least one of the numbers rh will become zero. 

Let us introduce the notation 

y = --rp/z cos y (1.12) 

From (1.8) and (1.12) we obtain the relation 
h2 + y2 = $' (1.13) 

Using (l.lO), we shall write rp as a polynomial in r: 

where H(x) is a polynomial of degree p, beginning with the third-order terms. It can be 
confirmed that 

Is, = up, k,=O, k,=- +-up r: @f/are) 

We can show that P/P < Up for any r, E (R,, R& i.e. 2 3 H (xl 2 0 for any x E (&, f&j. 
From the definition of cur and (1.10) it follows that all al>% 
Let us write 

z = W9aPX (pt/a~*)l% [I + H (z)/sW = drX + &Xa -t- dai -I- . . . 

Then, assuming that drJ_ 0, we obtain 

(1.15) 

we shall assume that x and s are sufficiently small for series (1.S) and (1.16) to 
converge. 

From (1.13) and (1.15) we have 

yZiRp + zz = pz (1.97) 
p2 = ap - h?/JRP (1.18) 

Introducing the variable cp with help of the formulas 
s = p cos 9, y = RpJ2p sin cp (1.19) 

we shall form a system of equations in 9, and cp. To do this, we obtain from (1.5), (1.10) and 
(1.13) 

x' = -WA-$ y' = 21)P'z dzi%x (I.20) 

and find 
(1.21) 

it can be shown that (p*> 0 when rE (fir, pa). 
From (1.15), (1.8), (1.10) and (1.21) we obtain 

Expanding its right-hand side in a Maclaurin series in z c making use of (1.19) and then 
integrating, we obtain a relation connecting 61 and cp: 

(1.22) 
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where a$n = a$')(p,h, R,L) are Fourier coefficients. 
Analogous expressions can be obtained for the remaining 61. 
Thus we have obtained solutions of system (1.3) 

(1.23) 

The relation cp = p(t) can be found in the same way as (1.22), by integrating Eq.(1.21) 

t=-j&q +xrlr,sinlcp+$, (1.24) 
121 

The solution (1.23), (1.24) contains the constants R, %,...,'L h,$,,Cl,...,C,, p, of 
which two (e.g. the last two) can be expressed in terms of the remaining constants. 

We can assume that R,h,z8, . . .,T~,@~, ...r8n-l,~ are the new variables. Then the trajec- 
tories of the system will lie on n-dimensional tori. 

The solution (1.23), (1.24) is periodic in the case when all numbers vf (1 = I,..., n - 1) 
are rational, and conditionally periodic otherwise. The rational character of v,O need not 
be checked, since the expansion for On in (1.23) is dependent. From (1.6) it follows that 

%I=Pz(Y - PA -. . . - Pn-+%-I + %) 

and y can be uniquely expressed in terms of 2n-periodic function cp from the formula (1.8), 
(1.12), (l.lO), (1.16) and (1.19). 

2. We shall seek the conditionally periodic solutions of system (1.1) in terms of first 
order in p,, which become, when p =0, the solution (1.23), (1.24) corresponding to the 
constants Ro, rso.. . .v ~09 ho, C,o,. . -9 G-LO, $00. 

Let us find the derivatives of the integrals of the truncated system h, R ~37 . . .t T,, 

by virtue of the complete system 

rL’ = - Bz,Drpfz cos y + 
c 

pLIRkl (r, e, 4 

01 

errs = Vk + zhD +iny+ 
E 
I>1 

$ Tkl (r, 0, t) 

obtained from (1.1) using the substitution (1.4). Here &I and Tkr have the form (the 
summation is carried 

Differentiating 

out over mt)O,m>l, lli I-<mi). 

z+/a (a(m. 0 (t) cos (z,e,+ . . . + 2,en) + b(m. l)(t) sin (z,e, + . . . + z,e,)) 
(m = ml + . . . + m,) 

(1.7) and (1.8) we obtain, by virtue of (2.11, 

(2.3) 

From (1.19) it follows that 

$ = p-'R-P [y’zRP/S - (z’RPl3 + ‘~3pzl&‘l3-W) g] 

Carrying out the necessary algebra, we obtain 

(2.1) 

(2.4) 
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where &lax is the partial derivative of the right-hand side of relation (1.15) and the 
functions @l have the form (2.2) with the coefficients a@"~'), b@-‘) analytic in y,z and 
depending also on 8, ~a,...,%,, h. 

In order to reduce the amount of calculation, we shall introduce the vectors I = (h, R, 
TQ, . . ., G) and C = (cl, . . ., cn-1, $0). 

We shall find the dependence of 8, and t on rp, from the expressions 

where Cl, \10 are the variables and I,, denote certain unperturbed values of I which will be 
found later. 

Differentiating the last expressions, we obtain 

Let us pass in (2.3) to the derivatives in cp , and rewrite (2.3) and (2.5) as follows: 

where the functions H,,Sl have the form (2.2) with coefficients arm.r), b@sl) depending on 

1, cp . 
Let us replace in H,, SI the variables r, 8, t by their expressions in terms of I, C, cp. 

As a result we obtain 

We can show, as in the case n = 2*,(*Korolev I.A. Cm the oscillations of essentially 
non-linear systems with resonance. Moscow, Paper deposited in VINITI, 5.8.85, 5824-85. 1985.) 
that the functions JL,& are analytic in 1, C in some neighbourhood of the unperturbed values 
of IO, c~(h~fO, R~#O),and conditionally periodic in cp, and the case when notasingle number 
Pl, . . .1 Prr is equal to unity is more cumbersome when it comes to practical calculations. We 
can also show that for fixed I, C, the values of the functions J,,Zl averaged over cp in 
the interval (0,~)) are independent of C when there are no resonances between the frequencies 
of the conditionally periodic coefficients on the right-hand sides of (2.7). 

Using the conditionally periodic change of variables 

I' = z - PU (Z, c, rp), C' = c - pu(I, c, cp) 

we will reduce (2.7) to the form 

(2.8) 
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(the integrals are taken at fixed I,G, and repeated dots terms with /.L, of degree higher 
than the first). 

Let us choose n constants I, = (ho,Ro,zso, . ..,T,o) from the equations 

B, (Jo) = 0 (2.91 
introduce the perturbations e: I'=r,+g, and write the equations of perturbed motion 

(2.10) 

where the mean value of the matrix M is zero, A@‘(g) is a set of terms beginning from the 
second order in E, repeated dots denote terms beginning with the second order in ii. 

We note that when there are no resonances between the frequencies of the conditionally 
periodic coefficients on the right-hand sides of (2.7) , the functions B, and G, in (2.8) may 
contain linear combinations of the components of the vector C. In this case we must supplement 
Sqs.(2.9) with equations equating the corresponding linear combinations of the components of 
the vector function 4, to zero. 

We obtain conditionally periodic solutions of system (3.1) stationary in the sense of 
Ill, with an accuracy of up to first order in p, by substituting I' = 10, c' = C, + ~G,(I,)cp 
into the transformations which reduce (2.8) to (1.1). Let all eigenvalues of the matrix A 
of (2.10) have negative real roots. Then* (*see /4/ and: Seregin V.N. On the study of the 
oscillations of systems with almost periodic coefficients. Candidate Dissertation, Moscow, 
MAI, 1980.) the corresponding stationary solution will be stable, and for sufficiently small 
p it will differ arbitrarily little from the solution of the complete system. By the 
stability and nearness we mean the stability and nearness of the corresponding deformed tori. 
When n= 2, the conditionally periodic solutions will themselves be orbitally stable. This 

can be explained by the fact that in this case the motion can be described in terms of the 
variables R, h, &, y, the variable 9, can be replaced by 0, and the behaviour of y will be 
governed by the behaviour of R,h,cp (this follows from (1.8), (1.121, (1.181 and (1.19)). 

Thus we have described a method of constructing stable , conditionally periodic solutions 
of system (1.1) with an accuracy up to terms of first order in p, differing as little as we 
choose fromthe corresponding solutions of the complete system becoming, when p = 0, solutions 
(1.23) and (1.24) ofthetruncated system. 
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